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Particle Creation in Anisotropically
Expanding Universe
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Using squeezed vacuum states formalism of quantum optics, a homogeneous and mas-
sive scalar field minimally coupled to gravity in Bianchi type-I model of the universe is
examined in the frame work of semiclassical theory of gravity. Hence an approximate
leading solution to the semiclassical Einstein equation is found. The next order solu-
tion for each scale factor in their respective direction show power law of expansion. It
is further noted that evolution of scale factors are mutually correlated. The phenom-
ena of nonclassical particle creation is also examined in the anisotropic background
cosmology.
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1. INTRODUCTION

The present universe in its over all structure seems to be spatially homo-
geneous and isotropic but there are reasons to believe that it has not been so
during its evolution and that inhomogeneities and anisotropies might have played
an important role in the early universe (Misner, 1969; Misner et al., 1973). The
isotropic model is adequate enough for the description of later stages of evolu-
tion of the universe but this does not mean that the model equally suite for the
description of very early stages of evolution of the universe, especially near the
singularity (Misner et al., 1973). Also the most general solution of the problem of
gravitational collapse turn to be locally anisotropic near the singularity (Belinski
et al., 1972; Heckman and Schucking, 1962; Throne, 1967). Cosmological solu-
tions of Einstein’s general relativity are also known in which the expansion can be
anisotropic at first, near the singularity, and later the expansion became isotropic.
Also, to avoid postulating specific initial conditions as well as the existence of
particle horizon in isotropic models, attempts have been made through the study
of inhomogeneous and anisotropic models of the universe. Among the anisotropic
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cosmological models, Bianchi type-I universe is the simplest one. In this model
the metric is considered as spatially homogeneous and possibly anisotropic. In
contrast to the Friedmann–Robertson–Walker (FRW) metric, Bianchi type-I met-
ric has three scale factors which evolve differently in their respective direction.
Therefore the expansion in this model can be considered as anisotropic expansion.
Interests in such models have been received much attention (Belinski et al., 1971;
Heckman and Schucking, 1962; Hu and Parker, 1978; Misner, 1969; Throne,
1967; Zel’dovich and Starobinsky, 1971). Huang has considered the fate of sym-
metry in Bianchi type-I cosmology using adiabatic approximation for massless
field with arbitrary coupling to gravity (Huang, 1990). Futamase has studied the
effective potential in Bianchi type-I cosmology (Futamas, 1984). Berkin has ex-
amined the effective potential in Bianchi type-I universe, for scalar field having
arbitrary mass and coupling to gravity (Berkin, 1992). These studies show that
Bianchi type-I cosmological model may be useful to understand the very early
universe. Anisotropic models of the universe which become isotropic have been
considered several times (Belinski and Khalatnikov, 1972). These motivate the
study of anisotropic background cosmological models with scalar field possessing
the advantage of FRW model (Folomeev and Gurovich, 2000). The possibility of
the Bianchi type-I universe approaches to the isotropic model can be examined.
From anisotropic to isotropic transition, a damping mechanism is required. One of
the efficient damping mechanisms could be due to particle creation in anisotropic
models. Therefore it would be useful to examine particle creation in anisotropic
cosmological model with nonclassical inflaton, which could expect to produce
sufficient particles to bring isotropy during the evolution process of the universe.

In this paper we study a homogeneous massive scalar field (inflaton), mini-
mally coupled to gravity, in a spatially homogeneous and anisotropic background
metric. The inflaton under our consideration can be quantized and represented
in squeezed vacuum states, hence an approximate solution to the semiclassical
Einstein equation and the phenomenon of nonclassical particle creation can be
examined in semiclassical theory of gravity. Throughout the paper, we follow the
units c = G = h = 1.

2. INFLATION IN BIANCHI TYPE-I METRIC

The Bianchi type-I model is an anisotropic generalization of the FRW model
with Euclidean spatial geometry. The Bianchi type-I metric can be considered as
spatially homogeneous and anisotropic and is given by

ds2 = dt2 − S2
1 (t) dx1

2 − S2
2 (t) dx2

2 − S2
3 (t) dx3

2, (1)

where S1(t),S2(t) and S3(t) are scale factors in three spatial directions. Which are
representing the size of the universe in their respective direction. The three scale
factors S1(t),S2(t) and S3(t) are determined via Einstein’s equations.
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In the background metric (1), consider an inflaton, minimally coupled to
gravity, satisfy the equation:

(gµν∇µ∇ν − m2)φ(x, t) = 0, (2)

where �µ is the covariant derivative. The Lagrangian density for the inflaton field,
φ, is given by:

L = −1

2

√−g(gαβ∂αφ∂βφ + m2φ2). (3)

Since the inflaton is homogeneous, ie.; φ(x, t) = φ(t), its classical equation of
motion for the metric (1) can be written as

φ̈(t) +
3∑

i=1

( Ṡi(t)

Si(t)

)
φ̇(t) + m2φ(t) = 0. (4)

In the present context (4) is the classical equation of motion for the inflaton for
the metric (1).

For the metric (1), with temporal component, the classical Einstein equation
can be written as:

Ṡ1(t)

S1(t)

Ṡ2(t)

S2(t)
+ Ṡ2(t)

S2(t)

Ṡ3(t)

S3(t)
+ Ṡ1(t)

S1(t)

Ṡ3(t)

S3(t)
= 8πT00

S1(t)S2(t)S3(t)
, (5)

where

T00 = S1(t)S2(t)S3(t)

(
φ̇2

2
+ m2 φ2(t)

2

)
, (6)

is the energy density of the inflaton. In cosmological context, the classical Einstein
equation (5), means that the Hubble constants (Hi = Ṡi (t)

Si (t)
) are determined by the

energy density of the dynamically evolving inflaton described by the classical
equation of motion.

In order to study the full quantum effects in a cosmological model, both
metric and matter fields are to be treated quantum mechanically. Since a consistent
quantum theory of gravity is not available, in most of the cosmological models
the background metric under consideration is taken as classical form and matter
field treat as quantum mechanical. Such approximation of the Einstein equation is
know as semiclassical approximation.

In semiclassical theory Einstein equation takes the following form

Gµv = 8π〈T̂µν〉, (7)

where Gµν = Rµν − 1
2gµνR is the Einstein tensor and 〈T̂µν〉 is the expectation

value of the energy-momentum tensor for a matter field in a suitable quantum
state under consideration. In (7) the quantum field can be represented by a scalar



648 Suresh

field, φ, and is governed by the time dependent Schrodinger equation

i
∂

∂t
�(φ, t) = Ĥm(φ, t)�(φ, t). (8)

Using the canonical quantization procedure, the scalar field can be quantized
by defining the momentum conjugate to φ, as

πφ = ∂L
∂φ̇

. (9)

Thus the inflaton in the Bianchi type-I cosmological model, can be described by
a time dependent harmonic oscillator with the Hamiltonian

Hm = 1

2S1(t)S2(t)S3(t)
π2

φ + m2S1(t)S2(t)S3(t)

2
φ2(t). (10)

The eigenstates of the Hamiltonian are the Fock states which can be con-
structed by annihilation and creation operators in the following manner.

â(t) = φ∗(t)π̂φ − S1(t)S2(t)S3(t)φ̇∗(t)φ̂, (11)

â†(t) = φ(t)π̂φ − S1(t)S2(t)S3(t)φ̇(t)φ̂.

Thus the Fock state of the Hamiltonian is:

â†â|n, φ, t〉 = n|n, φ, t〉. (12)

In the present context the semiclassical Einstein equation takes following
form

Ṡ1(t)

S1(t)

Ṡ2(t)

S2(t)
+ Ṡ2(t)

S2(t)

Ṡ3(t)

S3(t)
+ Ṡ1(t)

S1(t)

Ṡ3(t)

S3(t)
= 8π 〈Ĥ 〉

S1(t)S2(t)S3(t)
, (13)

where H is given by (10).

3. PARTICLE CREATION IN BIANCHI TYPE-I METRIC

Most of the cosmological models are based on a classical behavior of the
scalar field. Therefore, it is of interest to study the evolution of the system with
the scalar field, which possess the nonclassical features. Recently squeezed states
formalism of quantum optics (Shumaker, 1986) is found much useful to deal
with quantum issues in cosmology (Albrecht et al., 1994; Brandenberger et al.,
1992; Gasperini and Giovananni, 1993; Grishchuk and Sidorov, 1990; Hu et al.,
1994; Kim and Page, 1999; Kuo and Ford, 1993; Shumaker, 1986; Suresh, 2001;
Suresh and Kuriakose, 1998; Suresh et al., 1995). Squeezed states are minimum
uncertainty states and are obeying Heisenberg uncertainty principle. A squeezed
state is generated by the action of squeezed operator on any coherent state and,
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in particular, on the vacuum state. Therefore a squeezed vacuum can be defined
(Shumaker, 1986)

|Z〉 = Z(r, ϕ)|0〉, (14)

where the squeezing operator,

Z(r, ϕ) = exp
( r

2
(e−iϕa2 − eiϕa†2)

)
. (15)

In (15) r is the squeezing parameter which determines the strength of squeez-
ing and ϕ is the squeezing angle which determines the distribution between the
conjugate variables and they take values 0 ≤ r < ∞ and −π ≤ ϕ ≤ π . a and a†

are respectively known as annihilation and creation operators. When the squeez-
ing operator acts on annihilation and creation operators, lead following results
(Shumaker, 1986)

Z†aZ = a cosh r − a†eiϕsinh r,

(16)
Z†a†Z = a† cosh r − ae−iϕsinh r.

In the case of squeezed states, the variance of the quadrate components are not
equal but one component of the noise is always squeezed with respect to another.

Next, consider the Hamiltonian of the semiclassical Einstein Eq. (13), whose
expectation value can be computed in squeezed vacuum state by replacing the
number state |n, φ, t〉| with |Z〉. Therefore using (14), (15) and (16) in (13), we
obtain the semiclassical Einstein equation as:

Ṡ1(t)

S1(t)

Ṡ2(t)

S2(t)
+ Ṡ2(t)

S2(t)

Ṡ3(t)

S3(t)
+ Ṡ1(t)

S1(t)

Ṡ3(t)

S3(t)
= 8π

[ (
sinh2r + 1

2

)
(φ̇∗φ̇ + m2φ∗φ)

+ Re{cosh r sinh r e−iϕ(φ̇2 + m2φ2)}
]

(17)

In the above equation, φ and φ∗ satisfy the boundary condition

S1(t)S2(t)S3(t)(φ̇∗(t)φ(t) − φ∗(t)φ̇(t)) = i. (18)

To solve the semiclassical Eq. (17), transform the solution in the following form

φ(t) = [S1(t)S2(t)S3(t)]−1/2χ (t) (19)

Therefore (4) becomes

χ̈(t) +

m2 + 1

4

3∑
i=1

( Ṡi

Si

)2

− 1

2

3∑
i 
=j=1

( Ṡi(t)

Si(t)

Ṡj (t)

Sj (t)

)
− 1

2

3∑
i=1

S̈i(t)

Si(t)


 χ (t) = 0.

(20)
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The inflaton has a solution of the form

χ (t) = 1√
2γ (t)

exp

(
−i

∫
γ (t) dt

)
, (21)

where,

γ 2(t) = m2 + 1

4

3∑
i=1

( Ṡi(t)

Si(t)

)2

− 1

2

3∑
i 
=j=1

( Ṡi(t)

Si(t)

Ṡj (t)

Sj (t)

)

− 1

2

3∑
i=1

( S̈i(t)

Si(t)

)
+ 3

4

(
γ̇ (t)

γ (t)

)2

− 3

2

γ̈ (t)

2γ (t)
,

with the following condition:

m2 >
1

4

3∑
i=1

( Ṡi

Si

)2

− 1

2

3∑
i 
=j=1

( Ṡi(t)

Si(t)

Ṡj (t)

Sj (t)

)
− 1

2

3∑
i=1

S̈i(t)

Si(t)
. (22)

The semiclassical Eq. (17) can be rewritten as follows:

S1(t)S2(t)S3(t) = 8π

2γ

(
Ṡ1(t)
S1(t)

Ṡ2(t)
S2(t) + Ṡ2(t)

S2(t)
Ṡ3(t)
S3(t) + Ṡ1(t)

S1(t)
Ṡ3(t)
S3(t)

)[(
sinh2r + 1

2

)

×
[

1

4

3∑
i,j=1

( Ṡi(t)

Si(t)

Ṡj (t)

Sj (t)

)
+ 3

4

3∑
i=1

( Ṡi(t)

Si(t)

)
γ̇

γ
+ 1

4

(
γ̇

γ

)2

+ m2 + γ 2

]

+ (cosh r sinh r cos(ϕ + 2γ t))

[
1

4

3∑
i,j=1

( Ṡi(t)

Si(t)

Ṡj (t)

Sj (t)

)

+ 3

4

3∑
i=1

( Ṡi(t)

Si(t)

)
γ̇

γ
+ 1

4

(
γ̇

γ

)2

+ m2 − γ 2

]]
. (23)

The above equation can be solved peturbatively. Starting from the approxi-
mation ansatzs S10(t) = S10t

n1 ,S20(t) = S20t
n2 ,S30(t) = S30t

n3 , and γ0(t) = m,
we obtain the next order perturbative solution for S1,

S11(t) = 8πm

S20S30(n1n2 + n2n3 + n1n3)

[(
sinh2r + 1

2

) (
1 +

∑3
i=j=1 ninj

8m2t2

)

+ cosh r sinh r cos(ϕ + 2mt)

(∑3
i=j=1 ninj

8m2t2
− 1

)]
t2−n2−n3 . (24)
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Similarly, the next order perturbation solution for S2 and S3 are obtained as

S21(t) = 8πm

S10S30(n1n2 + n2n3 + n1n3)

[(
sinh2r + 1

2

) (
1 +

∑3
i=j=1 ninj

8m2t2

)

+ cosh r sinh r cos(ϕ + 2mt)

(∑3
i=j=1 ninj

8m2t2
− 1

)]
t2−n1−n3 , (25)

and

S31(t) = 8πm

S10S20(n1n2 + n2n3 + n1n3)

[(
sinh2r + 1

2

) (
1 +

∑3
i=j=1 ninj

8m2t2

)

+ cosh r sinh r cos(ϕ + 2mt)

(∑3
i=j=1 ninj

8m2t2
− 1

)]
t2−n1−n2 . (26)

Where S11 means the next order perturbation solution for the scale factor in
the x direction and the same holds for S21 and S31; respectively in the y and z
directions.

From (25), (26) and (27) it follows that

S11 ∼ t2−n2−n3 , S21 ∼ t2−n1−n3 , S31 ∼ t2−n1−n2 . (27)

The next goal is to examine particle creation in the anisotropically evolving
universe described through the Bianchi type-I metric. For this, consider the Fock
space which has a one parameter dependence on the cosmological time t. Then
the number of particles at a later time t created from the vacuum at the initial time
t0 is given by

N0(t, t0) = 〈0, φ, t0|N̂ (t)|0, φ, t0〉, (28)

where N̂ (t) = a†a. Thus using (11), the vacuum expectation value of the right
hand side of (29) becomes

〈N̂ (t)〉 = (S1S2S3)2φ̇φ̇∗〈φ̂2〉 + φφ∗〈π̂〉2 − S1S2S3φφ̇∗〈π̂ φ̂〉 − S1S2S3φ̇φ∗〈φ̂π̂〉.
(29)

Therefore

N0(t, t0) = (S1S2S3)2|φ(t)φ̇(t0) − φ̇(t)φ(t0)|2. (30)

The number of particles created in the vacuum states can be obtained by using the
peturbative solution in the limit mt0, mt > 1, in (30), therefore,

N0(t, t0) = 1

4γ (t)γ (t0)

S1S2S3

S10S20S30


1

4

3∑
i=j=1

(
Ṡi Ṡj

SiSj

+ Ṡi0Ṡj0

Si0Sj0

)
− 1

2

3∑
i=j−1

Ṡi Ṡj0

Ṡi Ṡj0
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+ 1

2

3∑
i=1

Ṡi

Si

(
γ̇ (t)

γ (t)
+ γ̇ (t0)

γ (t0)

)
+ 1

2

3∑
i=1

Ṡi0

Si0

(
γ̇ (t)

γ (t)
− γ̇ (t0)

γ (t0)

)

+
[

1

2

(
γ̇ (t)

γ (t)
− γ̇ (t0)

γ (t0)

)]2

+ γ (t)2 − γ (t0)2

]

�
(

n1 + n2 + n3

4m

)2 (
t − t0

t t0

)2 (
t

t0

)n1+n2+n3

(31)

By a similar procedure, one can compute the particle creation for the quantized
inflaton in squeezed vacuum states also. For this, consider the quantized inflaton in
the squeezed vacuum state formalism. Then the expectation values of π2, φ2, πφ

and φπ can be computed in squeezed vacuum state by using (11), (14) and (16),
and applying the results in (30), the number of particle created in squeezed vacuum
in the limit mt0,mt > 1, is obtained as

Nsqv(t, t0) = 1

4γ (t)γ (t0)

S1S2S3

S10S20S30

[
(2 sinh2 r + 1)

(
1

4

( 3∑
i=1

Ṡi(t0)

Si(t0)
+ γ̇ (t0)

γ (t0)

)2

+ γ 2(t0) + γ 2(t) + 1

4

( 3∑
i=1

Ṡi(t)

Si(t)
+ γ̇ (t)

γ (t)

)2)

+ sinh r cosh r(ei(ϕ−2
∫

γ (t)dt) − e−i(ϕ−2
∫

γ (t) dt))

×
(

1

4

( 3∑
i=1

Ṡi(t0)

Si(t0)
+ γ̇ (t0)

γ (t0)

)2

+ 1

4

( 3∑
i=1

Ṡi(t)

Si(t)
+ γ̇ (t)

γ (t)

)2

+ γ 2(t) − γ 2(t0)

)
− sinh2 r

(
1

2

( 3∑
i=1

Ṡi(t)

Si(t)
+ γ̇ (t)

γ (t)

)

×
( 3∑

i=1

Ṡi0(t)

Si0(t)
+ γ̇ (t0)

γ (t0)

)
− 2γ (t)γ (t0)

)
− cosh2 r

(
1

2

( 2∑
i=1

Ṡi(t)

Si(t)

+ γ̇ (t)

γ (t)

)( 3∑
i=1

Ṡi0(t)

Si0(t)
+ γ̇ (t0)

γ (t0)

)
+ 2γ (t)γ (t0)

)

− sinh r cosh r(ei(ϕ−2
∫

γ (t) dt)) − e−i(ϕ−2
∫

γ (t) dt))(
1

2

3∑
i=1

Ṡi(t)

Si(t)
+ γ̇ (t)

γ (t)

)( 3∑
i=1

Ṡi0(t)

Si0(t)
+ γ̇ (t0)

γ (t0)

)]
. (32)
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Again using the peturbative solution and ansatzs, we get

Nsqv(t, t0) �
(

n1 + n2 + n3

4m

)2 (
t

t0

)n1+n2+n3
(

t − t0

t t0

)2

× [
1 + 2 sinh2 r + sinh(2r) cos(ϕ − 2mt)

]
.

� N (t, t0)
[
1 + 2 sinh2 r + sinh(2r) cos(ϕ − 2mt)

]
, (33)

where N (t, t0) is given by (31).

4. CONCLUSIONS

In this paper we have examined the behavior of a homogeneous and massive
scalar (inflaton) field minimally coupled to the gravity in Bianchi type-I model of
the universe, in the frame work of semiclassical theory of gravity. The inflaton is
represented in squeezed vacuum state formalism of quantum optics and hence the
approximate leading solution to the semiclassical Einstein equation is found. The
next order solution for each scale factor in their respective direction show that each
scale factor in each direction is dependent on power law of expansion. Further more
the solutions show that evolution of scale factors are mutually correlated. When
n1 = n2 = n3 = n, then the corresponding solution reduces to isotropic model and
is consistent with the result obtained by Kim and Page (Kim and Page, 1999). From
anisotropic to isotropic transition a damping mechanism is required. One of the
efficient damping mechanisms could be due to the particle creation in anisotropic
models. We have also examined the nonclassical particle creation in Bianchi
type-I cosmological model by representing the inflaton in squeezed vacuum state
formalism. The present study can account for the nonclassical particle creation
and power law of expansion of the scale factors in Bianchi type-I universe, for
a homogeneous and massive scalar field minimally coupled to the gravity, in the
frame work of semiclassical theory of gravity.
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